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0. Executive Summary 
The sport of cross country (XC) has built its reputation on the rough terrain that has 
challenged its runners over its 100+ year history. Historically speaking, this “rough terrain” 
was defined by a heavy inclusion of hills in addition to other course elements like varied 
footings, hurdles, and water crossings. However, there are prominent figures in the 
cross-country community, notably former Iowa State XC coach Bill Bergan, that have 
expressed concern about the degradation of the sport’s spirit via the loss of hills. Iowa 
State itself has recently fallen victim to this trend, as it hosted the 2018 Big XII XC 
Conference Championships on a significantly easier route of its nationally-renowned 
cross-country course as depicted in Figures 1 and 2. 
 

 

Figure 1- Past ISU XC Course Route - Note the forested, hilly section on the left 
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Figure 2 - 2018 Big XII Championship Course - Note how it completely avoids forested hills 
section featured in the original course in Figure 1 and loops on flat ground instead 

 

Figure 3 - Elevation profile comparison for ISU course before/after rerouting 

 
It is our belief that we are now in a defining era for cross-country as a sport. Since the 
outset of our project, we have assumed the worst - that courses are indeed trending 
towards flatter and less interesting routes. This assumption was the motivating factor in 
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developing our rating system and website with the hope that it will make it easier for 
course designers, spectators, coaches, and athletes to visualize and comprehend the true 
nature of their XC courses’ difficulties. Armed with this new awareness of course difficulty, 
we hope that designers will be more inclined to add more difficult features to their course 
to increase its difficulty rating as point of pride for their XC meet. 
 
Our project’s work consisted of three distinct phases.  
 
First, we worked to determine the viability of the different elevation data sources that we 
had available. This was accomplished by conducting several “ground truth” studies where 
both the accuracy and precision were compared for phone-based GPS, high-end Garmin 
handheld GPS, Google Maps, and the Iowa DNR’s LIDAR database against the USGS’ 
geodetic points that serve as defined reference points for elevation around the United 
States.  
 
After making our selection of our datasource (Iowa DNR LIDAR), the software team 
designed and set up a MYSQL database using AWS RDS for hosting. Once the database was 
created, we wrote code to automate uploading elevation data to it. We then set up an AWS 
Lambda function written in python to connect to the database and perform cross country 
course analysis. After the database and back end were set up we built an Angular web app 
for users to interact with. The web app allows users to draw cross country courses with the 
use of the Google Maps API. The drawing tool collects coordinate data from the drawn 
course and sends it to the Lambda function for processing.  The connection between 
Angular and Lambda is done using the AWS SDK. After Lambda finishes processing the data 
a response is sent back to the front end where users will be able to view to results that are 
displayed with Chart.js. While the software development team was working on developing 
the aforementioned server and website, the ground truth team constructed a rating system 
for XC courses after consulting XC coaches, biomechanics faculty, and medical journals. 
We also contacted dozens of Iowa high school XC coaches to get XC course maps that we 
could trace with our web tool and then use in the calibration of our relative difficulty 
scoring system. In these communications, we also specifically sought out course maps that 
showed a change in race routing over different terrain from one year to another that could 
be used to test our project’s overarching hypothesis.  
 
Finally, we used the web tool to trace the 6 sets of courses we were able to find that had 
changed their routes in recent history. We traced the routes before and after the change 
and recorded the differences in our tool’s scoring of them. We then used statistical 
hypothesis testing to look for a significant trend of the sample altered course set getting 
less difficult over time. At a significance level of 0.1, we were unable to conclude that 
courses are growing less difficult. The process flow of our problem approach is illustrated 
below in Figure 4.  
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Figure 4 - Process Flow Diagram 

1. Requirements 

1.1 Functional Requirements 
● The initial ground truth validation studies need to provide definitive information 

regarding the accuracies and, subsequently, the viability of using topographic data 
sources available that are also feasible and scalable to a wider deployment. 

○ Met - LIDAR was experimentally shown to be an accurate source of 
topographic data. While it was proven to be feasible and scalable for the 
entire state of Iowa, it is inherently not scalable for use outside Iowa. 

● The web app tool needs to be able to use LIDAR files as its data source. 
○ Met - We currently use LIDAR as our data source to provide elevation to the 

users. 
● The web app must easily allow users to provide the course XY data themselves.  
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○ Partially met - Users can quickly draw courses from a satellite perspective 
using Google Maps API.  

● The web app must be able to run classification algorithms on the elevation profiles 
and classify hill-like topography in to subclassifications like big hills and rolling hills. 

○ Met - The app finds and classifies big climbs and rolling hills, then displays 
them in the report. 

● The elevation profiles and their derived metrics must be presented in a visually 
appealing manner and in an easy-to-interpret format.  

○ Partially met - User interface is up to our own personal standards, but we 
were unable to survey users’ experiences as we had originally intended. 

1.2 Use-Cases 
We foresee our app being usable by cross country coaches to better design racing 
strategies for their athletes based on the information presented by our website. We also 
foresee athletes and spectators desiring to use our application out of sheer curiosity, as the 
analytics we are able to produce for courses go well beyond any historical precedent for 
high school XC meets. 

The information presented on our website will be of particular interest to users who are 
encountering a course for the first time. Typically, athletes need to walk the race course 
before the race itself in order to understand what course elements are present like big hills 
or rolling hills sections as well as where they are located. Our website could be used to 
replace these walkthroughs, as we are able to report that same information to users. 

1.3 Non-Functional Requirements 
● Server will match x, y coordinates in a course to elevation within 10 seconds.  

○ Not Met - Our original goal of 10 seconds turned out to be harder to achieve 
than we originally thought. A typical 8km (the standard for NCAA cross 
country courses) course takes 32 seconds to complete, 31 seconds of which 
are spent retrieving points from the database. As such, to meet this 
requirement, we would need to change our database design heavily; for 
instance, we could split up counties into multiple tables. This solution comes 
with a host of its own problems, and we didn’t have time to modify our 
database that heavily. 

● 90% of surveyed users must not report issues/confusion after using app 
○ Not Met - We ran out of time to conduct a survey so we do not have the data 

to back this up. 

● Elevation data source must be consistently within 3 m of the USGS official elevation  
○ Met - LIDAR elevations were found to be within 3 m of the USGS reported 

elevation 95% of the time. 

SD May19 - 37 - Page 8 



● 90% of users report that they comprehend the meaning of the various metrics 
produced by the classification  

○ Not Met - We ran out of time to conduct a survey so we do not have the data 
to back this up. 

● 90% of users report that the scorecards are presented in visually appealing and 
easily interpretable format 

○ Not Met - We ran out of time to conduct a survey so we do not have the data 
to back this up. 

● Quantitative ratings of 0-10 course score must be within ±1.5 points of average trial 
runners’ qualitative rankings of courses. 

○ Not Met - Due to the late snow and rain during the second semester we 
were not able to have runners run the course to test our difficulty rating. 

2. System Design & Development 

2.1 Design Plan 
In order to determine whether or not cross country courses have indeed been trending 
towards flatter routes in recent years, we first had to face the challenge of selecting a 
source of elevation data that could be trusted to give us the most valid answer to our 
project’s overarching question. This challenge was overcome by designing a series of four 
different physical site surveys where the different technologies available to us were 
compared and contrasted, pointing us in the direction of LIDAR data recently compiled by 
the Iowa DNR for the entire state of Iowa.  
 
The next phase of the design plan was deciding how “hilliness” could be best quantified. We 
turned to faculty from Iowa State as well as from other universities to seek counsel on this 
question, but we ultimately took guidance from a series of medical journal articles that 
recommend using a metric of energy cost to capture the physical challenge presented to 
runners by inclines and declines.  
 
At this point of the project, we decided that we wanted to go beyond our original goal of 
simply answering the question of courses possibly getting less hilly. Instead of doing these 
calculations manually for only a few courses, the idea of constructing a website that could 
be used not just to compare courses of changed routes but to compare any course against 
another using a single unified difficulty rating system was hatched. With the 
recommendations of ISU Coach Bill Bergan, we decided to design software that could also 
capture information like hardest/easiest miles of a course, how much of the course is 
rolling hills, and the amount of “big” hills contained in a course.  
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With this new goal in mind, the software engineers set out to determine how to interface 
with the LIDAR files available and how to structure the frontend and backend computing 
responsibilities for the most expeditious computation of all ratings. We used AWS lambda 
to run Python scripts that made all course calculation, a MySQL database storing billions of 
coordinates for elevation in the state of Iowa, and an Angular front-end running chart.js for 
our visuals and Google Maps for user input. 
 
It was only once the LIDAR data retrieval portion of the software was integrated with the 
Python rating scripts that we were able to answer the title question of the project. We 
contacted over 50 XC coaches in the state of Iowa looking for maps they had of courses 
that had changed from one year to another. By analyzing routes with our rating software 
both before and after they had been rerouted, we would be able to look for trends of 
courses getting less hilly and, accordingly, less difficult.  

2.2 Design Objectives 
Our design plan was assembled in accordance with four key design objectives that we 
outlined for ourselves at the beginning of this project back in EE 491.  
 
First, we needed to make an educated choice as to which source of elevation data would be 
most useful for our application of documenting XC course topography. This choice needed 
to be made with factors of ease of use, legitimacy, and availability in mind. After concluding 
that LIDAR was the most promising source of ground truth, we still needed to 
experimentally test the legitimacy of the Iowa DNR LIDAR database. The DNR’s website 
makes no guarantees as to the accuracy or precision of their LIDAR database, so the 
responsibility of testing its accuracy and precision fell on our shoulders.  
 
Second, we aimed to develop a course rating system that would be simplistic enough to 
make intuitive sense to a user of the web app but also rigorous enough to have a real 
physical meaning that represents a fair assessment of a course’s difficulty associated with 
its elevation patterns. In order to give even more insights as to a course’s features for a 
runner that may be new to a course, 
 
Third, we wanted to create a straightforward website for users to view the elevation 
profile, route, rating, and other metrics of an inputted course. These services also needed 
to be supported by a robust backend computing framework that could quickly process the 
requests for elevation data from our massive LIDAR files.  
 
Finally, we looked to conclusively answer the question of cross country courses becoming 
less hilly by using our software tool.  
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2.3 System Constraints 
While the free access to LIDAR data for the state of Iowa has proven to be invaluable to the 
success of our project’s goals, it also presents a constraint - our product currently cannot 
be used to trace any race courses outside Iowa. While all of our Python scripts for analysis 
will work perfectly fine on any elevation profile that is passed through them, the actual 
retrieval structure for the Iowa LIDAR data had to be specifically designed for the Iowa 
DNR’s database. While it would be very easy to allow for the upload of GPS-based elevation 
data for other states, our primary choice of LIDAR makes our software much more valuable 
for use inside Iowa than outside Iowa.  
 
Possibly the hardest constraint we had to deal with is the raw size of the lidar files we used. 
Each county had somewhere around 225 million points, which, even after repeated 
attempts to compress that data, results in ~7-8Gb per county. Which leads to our next 
constraint: database size. The free tier of AWS RDS only allows for 20Gb of data which only 
allows for 2, maybe 3 counties worth of data. As a result of this constraint, we chose to not 
upload all counties in Iowa as we originally hoped; instead, we uploaded 7 counties that we 
had the most courses for. These counties are: Story, Linn, Polk, Johnson, Black Hawk, 
Dubuque, and Marion. We needed 65 Gb of AWS RDS storage to store these counties, 
which costs us $2.45 a month.   
 
The technological savviness of the software’s users is also a constraint to the project. It is 
key that the user interface is as simplistic as possible in order to lower the intimidation of 
the entry barrier for cross-country officials at every tier of the sport including older, small 
town athletic directors. Since there is currently no similar software being used by our 
target users today for this purpose, it is only reasonable to expect the users to be 
apprehensive about giving it a try.  

2.4 Design Trade-Offs 
 
We have decided to base our server off 3 meter resolution LIDAR files for our data set as 
opposed to the higher resolution 1 meter files that are also available. We are content with 
this choice because a 1 meter resolution would require 9 times as much file storage, and 
using a worse resolution can reduce the accuracy of our statistics.  
 
We have chosen to only allow users to draw courses using our online web tool instead of 
allowing them to use their phones as XY sources from which we could pull the relevant 
elevation data from the LIDAR database. While our ground truth studies showed that the 
XY data is trustworthy enough, the convenience of not having to physically walk the entire 
course of interest outweighs the inconvenience of having to draw the course route from a 
satellite perspective.  
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We will have all calculations done server side because with large file sizes, pushing the data 
and analysis to a user’s machine will not be feasible. The client side will be used for forming 
the graphs because we want graphs to be interactive, however it will require more work to 
be done on the user’s machine for possible input lag. 
 
Our app will have a weakness where it cannot tell terrain and obstacles on the traced 
course. This means if your course goes through sand, this would increase the courses 
difficulty, but our app does not take that into account. We currently only plan on giving 
statistics on elevation.  
 
Instead of creating a web app to rate the hilliness of a cross country course, we could 
instead analyze several courses and report that analysis in a paper, along with detailed 
descriptions of how to apply the same analysis to other courses. However, the interactivity 
and reusability of a web app makes it the clearly more useful solution. Also, the intended 
user for this app, cross country coaches, would not be as interested in a research paper as 
they would an easy to understand and interactive visualization of the same data. 

2.5 Architectural Diagram 

 

Figure 5 - Architectural System Diagram 
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2.6 Module, Constraint, and Interface Descriptions 

2.6.1 Establishment of Ground Truth & Data Source Selection 
Several factors were considered when deciding which devices would be evaluated as 
potential sources of elevation data for XC courses. The device/source needed to be 
relatively affordable and easy to use so that it could be deployed to high schools around the 
state for on-site surveys of course elevation. It would also need to be sufficiently accurate 
with its latitude and longitude (XY) bearings to properly document a surveyed route. It 
would also need to produce elevation data sufficiently precise to properly record all 
possible slopes on an XC courses from slight undulations of rolling hills to steep inclines 
and declines.  
 
With these considerations in mind, we selected the following devices/sources for study: 

● Google Pixel smartphone 
● Motorola G4 smartphone 
● Garmin Montana 680t  
● Iowa DNR LIDAR database 

 
All surveys were scheduled and conducted while monitoring the dilution of precision (DOP) 
conditions for the GPS/GLONASS constellations above Ames utilizing Trimble’s GNSS 
Planning webtool (Trimble). Surveys were only conducted when DOP was at a daily 
minimum in order to yield the most accurate position computations. 
 
The first survey was conducted at Lee Park in Ames. The three handheld GPS units were 
walked in an “L” shaped path to examine their XY accuracy when compared to the straight 
path. All three units were found to have an RMS deviation from the defined straight line of 
less than less than 5 feet, giving us confidence that we could trust the devices to produce 
adequately smooth XY paths. The National Collegiate Athletic Association (NCAA) has a set 
standard for the width of cross-country courses at 4 meters wide, so the 5 foot first 
standard deviation of these XY values would still be acceptable had we would have gone on 
to use them to trace course routes (Seewald).  If the course was walked in the middle of the 
route, the traced line would reliably fall within the confines of the route’s width 
boundaries. 
 
The second and third surveys were conducted at the Iowa State Cross Country Course. 
First, all three handheld devices were walked around both the old 8 km course route that 
included the hilly forested section and the new route which omitted it. The LIDAR database 
was also used as an elevation source of comparison by tracing the route on Google Maps 
and then uploading those XYs to return the corresponding elevations in the LIDAR 
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database. The elevations recorded at all these points were then plotted and compared as 
seen in Figure 6. 

 

Figure 6 - Raw comparison of elevation datasources on Iowa State XC Course 

Both of the phones (red and orange lines in Figure 6) were found to be very noisy sources 
of elevation, making the Garmin data and the LIDAR data the more attractive choices.  
 
To better determine the precision of the four possible sources, all the devices were walked 
in a straight line for 100 meters both forward and backward beginning at an United States 
Geological Survey (USGS) geodetic point. Such points are physical markers scattered 
around the country where the USGS has verified the elevation. Hypothetically, a perfect 
elevation data source would produce an elevation profile from this survey that is mirrored 
due to the fact that the same terrain is being traversed twice. However, both of the phones 
once again failed to produce this mirrored quality we were looking for as shown in Figure 7. 
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Figure 7 - Geodetic point precision survey results for each elevation source 

 
As noted above in Figure 7, the USGS geodetic point’s official elevation corresponded 
perfectly with the LIDAR elevation value at that point, while the Garmin demonstrated a 
systemic accuracy issue across the length of the survey. This inaccuracy, along with its 
weak precision, pushed us to select the LIDAR database as our datasource. 
 
As a final test of the validity of the LIDAR data, we once again used the USGS geodetic point 
network and extracted elevations at 20 different points from all regions in Iowa where a 
geodetic point existed. We then compared the difference in elevations and found that the 
standard deviation of the variance between the two elevation sets was less than 2 meters, 
adding to our confidence that LIDAR was our best option as a source of “ground truth” for 
the project. 
 
After the LIDAR selection had been made, the ground truth team continued to experiment 
with applying various filters to the phone-based elevation data with the hope of reducing 
its noise. The bulk of this experimentation was with MATLAB-implemented Savitzky-Golay 
filters of varying window lengths, the results of which are seen in Figure 8. 
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Figure 8 - SVG filtering frame width experimentation on ISU XC course elevation datasets 

 
Each different datasource was found to have its own unique optimal frame width of 
elevation points. While the results of this filtering removed nearly all of the noise from the 
phone-based elevation data, in situ comparison of reported large hills did not correlate 
with what we observed while physically conducting the survey (see Figure 9), giving us little 
confidence that, even with filtering, the phone-based GPSs could ever be used to reliably 
capture the most subtle terrain features like rolling hills and smooth inclines/declines.  
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Figure 9 - Filtered handheld GPS data comparison vs. unfiltered LIDAR data 

2.6.2 Rating System 
Instead of of judging courses purely based on their amount of total elevation climb or 
average slope, we decided that we wanted to pursue a more rigorous analytical approach 
to what constitutes “difficulty” in an XC course. To answer this question, the team met with 
national champion former XC coach Bill Bergan to get his take on the matter, and we also 
reached out to Iowa High School Athletic Association and NCAA officials along with other 
faculty for their expertise. After much discussion, we decided to focus our efforts on the 
energy cost of running on various slopes. This energy cost model is the standard method for 
medical studies that analyze exertion when walking or running on inclines and declines. A 
University of Calgary-led study published in 2016 experimentally found that the energy 
cost (Cr) of running in terms of J∙kg-1∙m-1 has the following relationship with slope where i 
is the slope between two adjacent data points (Vernillo). 
 

 

                Equation 1: Energy Cost as a function of slope 
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Figure 10 - Plot of Energy Cost vs. Slope Gradient 

MATLAB was used to put this energy cost calculation in to practice during the prototyping 
phase of the project. Working with the LIDAR set of a few thousand elevation data points 
from a traced course, we calculated the slopes between each point. For each slope, the 
aforementioned energy cost is computed. The calculation is repeated for all consecutive 
points in the elevation dataset, yielding a summed cumulative energy cost of running that 
course. Additionally, a distance weighting is applied to individual costs to adjust for the 
added difficulty of a hill that is located farther in to a race than one that is right at the start 
(adjusting for fatigue factors). The justification for such distance weighting was presented 
in a 1991 article by J.C. Brueckner in the European Journal of Applied Physiology 
(Brueckner). These energy cost sums are then divided by their respective distances so that 
a 1 mile route’s difficulty can be fairly compared to that of a 10 mile route.  
 
As part of our desire to build an easy-to-understand rating system, we designed a 0 - 10 
rating system that is associated with the energy cost sum for a given course. This scale was 
calibrated by equating the energy cost of running a perfectly flat course with no hills as a 
“0” on the scale. We then conducted a survey of 30 different cross country race courses 
across all regions of the state of Iowa and calculated their cost ratings. The average of 
these ratings was then computed and that value equated to a rating of “5” to denote a 
course of average difficulty. Accordingly, all courses below and above that specific difficulty 
energy cost value were mapped to indices on either side of “5” with equal spacing. All the 
course energy costs were then plotted using Microsoft Excel and a linear best fit line was 
generated to serve as the mapping function from energy costs to our goal of a 0 - 10 scale. 
This resulting trendline is the equation used by the webtool to compute 0-10 difficulty 
ratings for new courses evaluated on the web tool.  
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Figure 11 - 0-10 Rating System Calibration 

 
We made the conscious design choice to not limit ratings to a maximum of 10. If a user 
were to draw the route up Mount Everest, the rating system would obviously return a value 
higher than 10. However, so long as a user draws a course that would reasonably be run 
with topography typical of Iowa, the difficulty rating would hover around a rating of 10. If 
this system were to be applied to more rugged topographies not found in Iowa, this 
survey-based calibration of the mapping equation would need to be repeated to more 
accurately sample the cross country courses of that region to determine a new average 
difficulty baseline.  
 
While we believe this topography-based 0-10 rating system itself will be helpful for course 
designers to better understand the difficulty of their courses, we realized that we could 
detect other types of trends within the cross country courses processed by our tool that 
could be of particular interest to the XC runners and spectators.  
 
First, we allowed for the segmentation of courses so individual miles (or kilometers) could 
be analyzed on an individual basis. This mile-by-mile difficulty breakdown is a common 
way for runners to describe a course’s difficulty, so this feature will allow for runners and 
coaches to understand where the most difficult sections of the race are and plan their 
racing strategies accordingly. 
 
The thresholds set for defining big hills was drawn from the team’s personal experience of 
running.  No research pointed to a conclusive set of thresholds to distinguish a normal and 
challenging hill.  The thresholds were set to a minimum uphill length of 50 m and average 
grade of at least 8%.  We decided on 50 m since we felt overcoming a challenging hill would 
be long enough.  In a hypothetical situation, if a runner would run up this hill, it would be 
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expected they would put in a reasonable effort to run up the hill.  We also referenced the 
Iowa State University XC course to help establish this baseline since we knew there were at 
least 3 big hills from our own experiences. 
 
Rolling hills can be understood as regions where the elevation oscillates to a certain 
degree. Like big hills, there wasn’t a place to decisively define it numerically. The detection 
algorithm was calibrated on different areas/paths to suitably classify sections of courses. 
This process of calibration is pictured below, where a binary system was used when testing 
different parameters in the rolling hill detection to visualize the results. Where the square 
wave is high, the system is identifying rolling hills. Using this approach, the rolling hills 
script was tweaked and calibrated to measure the portion of the course composed of 
rolling hills. 
 

 

Figure 12 - Rolling Hills Testing and Calibration Example 

 
All elements of the rating system were prototyped in MATLAB before their conversion to 
Python scripts for final implementation on our cloud server.  
 

2.6.3 Web Tool 
Following our analysis of different data sources’ precision of elevation measurements, we 
have decided to design our application to work with the bare-earth model LIDAR data set 
from the Iowa Department of Natural Resources. This LIDAR model of the state of Iowa 
serves as the elevation ground truth by the application. The LIDAR data itself will be stored 
in a central database to be queried by the application on a county-by-county basis.   
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In order to input their course, users will map the course with the drawing tool which 
utilizes the Google Maps API (see Figure 13). The web app sends the longitude and latitude 
coordinates to the AWS Lambda function through the AWS SDK to find the elevation of 
each point by querying the database. The points are in a non-uniform distribution with 
varying distances between them. However, they are normally in the range of 2.5 to 4 
meters. The Lambda function performs a series of analyses on the data it has collected and 
computes the interval between each point that it has elevation data for. After completing 
its analyses, the Lambda function sends the report back to the client app to be displayed to 
the user (see Figure 5). The report is displayed in a series of graphs using Chart.js. There is 
also metadata about the course along the right side of the user interface. The user 
interface displayed has 3 tabs: a tab for the elevation vs distance graph, one for the 
difficulty vs distance graph, and one for the course that they drew in the first step (see 
Figure 14).  

Figure 13 - Screenshot of the drawing tool 
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Figure 14 - Screenshots of the scorecard’s interface 
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3. Implementation 

3.1 Implementation Diagram 

 

Figure 15 - Implementation Diagram 

 
Technologies and libraries used for the front end include Angular 7, a typescript 
framework, Webpack, which compiles the Angular code into JS, Karma, an unit and 
integration testing framework, and the Google Maps API to allow the user to see a satellite 
map of the course they want to draw.  The code was written in Typescript and JSON. 
 
For the backend of the project, the project heavily relies on Amazon Web Services.  AWS 
Lambda was used to perform on demand calculations when the user requested a course 
analysis.  AWS Lambda contains the big hill classifier, rolling hill classifier, and energy cost 
functions which were written in Python.  A MySQL relational database built in an Amazon 
RDS database was used to store the LIDAR elevation points and coordinates.  To ensure 
communication between the functions and the database, the PyMySQL library was used.  
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3.2 Rationale for Technology & Software Choices 
For the front end of our project represented by a XC course tracing app built for a web 
browser, we decided to write it in Typescript using the Angular 7 framework. Angular is a 
popular front end framework and combined with the Karma testing framework, the web 
app can be easily tested by unit and integration testing. 
 
To reduce long waiting times during a course analysis, Amazon AWS was the best answer 
since our team could manage the data and improve the performance of our queries against 
the database.   

3.3 Applicable Standards and Best Practices 
In our evaluation of the Iowa DNR’s LIDAR datasets, we abided by the American Society for 
Photogrammetry and Remote Sensing’s vertical accuracy validation testing standards 
(Dharmapuri). 
 
From our research, there is little previous academic work on the topic of cross-country 
course topography, so our project team was responsible for constructing many of our own 
standards for evaluating courses. We worked with former Iowa State coach Bill Bergan 
along with officials from the Iowa High School Athletic Association and NCAA and coaches 
from across the state of Iowa.   
 
To ensure the web tool was working before conducting the analysis, we originally planned 
a month for testing after Spring Break in case our project ran behind schedule.  With this 
target built into our plans, this ensured our project finished on time. 
 

4. Testing, Validation, and Evaluation 

4.1 Unit Testing 
Beginning testing occurred with individual scripts written to identify and quantify features 
within elevations profiles. Big hills, rolling hills, and energy cost/difficulty were written and 
tested independently. The approach to detecting and quantifying hills was to first get a 
script capable of achieving expected functionality with a standard, generic number scale 
before calibrating it to the elevation data it was to be run using. By eliminating the scale 
factor, it allowed aspects of the code to be isolated and experimented with, and that let 
conceptual features be fleshed out that would be necessary to deliver consistent, expected 
results. Calibration was accomplished using real test cases, running collected elevation 
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data with the scripts and observing if the results matched expectations. This was also an 
iterative process where during calibration it was discovered that additional code needed to 
be added to deal with unexpected situations. 

4.2 Interface Testing 
As the project progressed we found that all of our time was devoted to making sure that 
our software tool worked end to end manually. We needed to build up the infrastructure of 
our project so that we could be sure we had a working implementation in the end. This left 
us without anytime to implement the testing frameworks and utilities that we had 
originally planned on. If we had more time for the project, at this point in the project, then 
we would have begun to set up a scaffold for testing all of the components of the project. 
The project is currently in a working state so it would be the perfect time to add testing to 
make sure the work we have done stays functioning, and we would be able to have the 
confidence that the project would remain stable as it scales.  
 
We had planned on a couple of methods for testing our project. For the front end we were 
going to use Karma to test our angular app. Karma is a testing suite built for Angular. With 
Karma we could write unit and integration tests with ease to be able to ensure the front 
end of the project performs as expected. To test the Lambda back end we would need to 
write unit tests for python and supply the scripts with dummy data. We had already began 
perform manual testing of the back end with dummy data to ensure that the scripts ran 
without errors, but we would still want to incorporate unit tests to verify that the exact 
output is what we expect it to be. Lastly, the database upload scripts are written in Java, 
which would be testable with J-unit tests. We have reached a steady enough state in the 
project where the architecture is not changing in as much or as often as it was in the early 
stages. While there was not previously a good opportunity to implement these testing 
methods before, going forward it would now be appropriate. 

4.3 System Integration Testing 
The original scripts for elevation analysis were written and tested in MATLAB. In the 
MATLAB environment, these scripts were integrated together so that the entire 
classification process could be called at once with a set of elevation data. During this 
integration, the code was also made more efficient by incorporating the results of the 
scripts in to one another. For example, the script for detecting big climbs could have that 
data excluded from the rolling hills detection and prevent overlaps.   
 
When the scripts were needed to be implemented in the backend to be used within the 
web app, Mumm worked with the Data Analysis team to complete this process. The code 
was converted from MATLAB to Python by the respective coders and then reviewed 
side-by-side with Mumm. The code’s competency was confirmed, tweaked for readability, 
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errors were fixed, and then everything was compiled to verify the code could be ran 
without problems. 

4.4 User-Level Testing 
One important area for testing was user interface. Our service depended on allowing a 
person to enter a course that is multiple miles long, in an accurate and convenient way. 
There are multiple features included in the system to facilitate this process. The Google 
Maps API includes functions to search and zoom to quickly move to regions and find 
locations. An included feature of our own was the ability to backstep through the traced 
course and erase mistakes. 

4.5 Validation and Verification 
Elevation data from our different sources were methodically compared to determine the 
best source to be paired with the software’s output. The Lidar data was already processed 
by Iowa’s DNR and made available in a format that our team could use. The GPS data to 
compare it with was collected in the field by two team members. Multiple factors were 
taken in consideration when doing the GPS surveys. The surveys were exclusively 
conducted on sunny days, at optimal times when the alignment of the GNSS constellation 
allows for the lowest dilution of precision (DOP) value. (Trimble) All sources were 
normalized to one distance index, allowing the data sources to be compared on a 
waypoint-by-waypoint basis. At each point in this index, the root mean square (RMS) 
disparity between each datasource reported distances between consecutive points was 
calculated. Our target for the RMS disparity between values was less than 5%. 
 
In the developed web app, the course rating score system was calibrated by using a range 
of cross country courses provided to the team in different regions of the state. By using 
different portions of the state, the different types of geography could be taken in to 
consideration and give a clear view of the range. During this process, various components 
of the courses were validated. 
 
In verifying the results of courses traced in the developed tool, several components were 
validated. The courses provided all were classified by lengths, which could be compared to 
the length listed by the web app. If the length the app listed was within 2% of its stated 
length, the course provided and its measurement were considered accurate. Additionally, 
the elevation profiles were verified and checked for anomalies - to ensure that the courses 
drawn by the webapp user didn’t drift off-course to a radically different elevation. 

4.6 Evaluation 
A collection of courses were used and processed using our web app, with the scoring 
algorithms that were written being used to collect information on the courses. The web 
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app printed out the information for the courses, of which we used the rolling hills, big 
climbs, and energy costs in our analysis. This data was collected while testing the app and 
calibrating the difficulty rating displayed.  
 
A subset of the courses tested were those that had been replaced or rerouted by a school, 
allowing those courses to be compared directly. Unfortunately, there were only six courses 
that could be directly compared. In conducting our analysis we used the t-statistic 
hypothesis testing, which is designed to be used with a small sample size. With that 
approach, we could not conclude that there was a trend with the courses provided to us. 
Even if we removed one outlier where a course got substantially harder, there wasn’t a 
clear trend from the information we had available. That said, with a small sample size of 6, 
our study wasn’t conclusive either way. 

5. Project and Risk Management 

5.1 Tasks Decomposition and Roles/Responsibilities 
Our team of 6 was composed of 2 Electrical Engineers, 1 Computer Engineer and 3 
Software Engineers, with the software bias being appropriate for the focus of this 
project.The team split into 2 main groups for the majority of this project, as detailed in the 
below table. One team focused on building the core software systems that were used in the 
course drawing service, while the other focused on the process of obtaining and processing 
data to make that software system useful. The three members building the software system 
were naturally Software Engineers, with the engineers in other disciplines using their skills 
in signal analysis and troubleshooting to handle data processing. 
 

Software 
Development 

Data  
Analysis 

Andrew Mumm 
David Kirshenbaum 

Jacob Feldman 

Connor Smith 
Ryan Hilby 

Thomas Chambers 

 

5.2 Project Schedule 
The first half of our project schedule was dedicated to collecting elevation data through 
various sources to understand the limitations and usefulness of each source. The two main 
methods that were researched were LIDAR and GPS, which the team split focus between. 
With our growing understanding of elevation data sources, we began exploring options for 
conducting elevation analysis. The first semester concluded with a thorough comparison of 
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elevation sources, and a roadmap for the web app that would be created in the second 
semester.  
 
The second semester was full of work on the software development and collecting courses 
to do analysis on. Key components of the project were split up and worked on 
concurrently. Database management, frontend development, the backend framework, and 
scripts for processing elevation data had work begin in October. We had a working 
prototype at the end of the first semester, but decided to change our back-end so at the 
beginning of the second semester we began work on the back-end in AWS. Mid-march we 
had the website fully working again with some bugs. In April, full integration and testing 
took place. 
 
The original plan for our work and how our schedule actually played out are pictured 
below. While we accomplished our major tasks, some portions experienced delays and 
others ended up cut. We were satisfied with the results, however, as the items cut from our 
suggested schedule didn’t have a significant impact on our project and were part of 
brainstorming of things to do to keep the team occupied depending on the speed of 
progress. 
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Figure 16: Gantt chart of project timeline in first semester  

Figure 17: Gantt chart of proposed project timeline in second semester 
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Figure 18: Gantt chart of actual final project timeline in second semester 

5.3 Risks and Mitigation 
The project had few security or safety considerations to take in to account during 
development. We initially considered it a safety concern that we used expensive GPS 
equipment loaned to us by ISU faculty. From the beginning of the project, when we were 
performing GPS surveys the work was done with a minimum of two people so that all 
equipment could be observed and protected. 
 
Another consideration we knew would have to be approached was database costs. Our 
database was initially free but had size constraints that would begin to incur costs if it was 
exceeded. We discussed different approaches to the problem but ultimately settled on 
limiting our analysis to a few initial counties, which would be sufficient to prove the 
functionality of our project. Throughout this time Jacob Feldman was in charge of 
managing the database, monitoring its size and alerting the team of problems. 
 

5.4 Lessons Learned 
The development of our project was a great learning experience for everyone on the team. 
As the team got split between many important tasks that were being worked on 
concurrently, it made communication and a unified plan important. While we had 
difficulties in areas, it was helpful for each component of the project to have someone who 
took ownership of the work and could detail what the problems were so we could 
understand how our schedule would be impacted and how to proceed forward.  
 
Additionally, our team learned a lot in the field of troubleshooting and developing solutions. 
Each portion of the project ran in to its own problems, and integration introduced further 
problems. Communication during these times was key, as well as flexibility in our schedules 
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so that members could help work on solutions or shift their focus to different work if their 
current assignment was impeded by technical problems. 
 
Our team learned a lot from a technical standpoint as well. As discussed previously, the 
biggest technical challenge we faced was the raw size of our dataset, and all the challenges 
that comes with that. As such, we learned a lot about optimizing upload, access, and 
structure for a large dataset. This included, but was not limited to, modifying database 
structure to optimize our main query and optimizing queries, data processing, and insert 
requests. 

6. Conclusions 

6.1 Concluding Remarks 

 

Figure 19 - Before/After route change difficulty comparisons 

Figure 19 showcases the disparities in difficulty before and after course rerouting that we 
found in the six different cases of courses that had changed. While some courses grew 
dramatically easier after their reroutes (MVC XC Course), some (Gilbert) grew dramatically 
more difficult. Due to the small sample size (N < 30) of course maps we obtained that 
showed a route change, we elected to test conduct hypothesis testing via Student’s t-test.  
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At a significance level of 0.1, we were unable to reject our null hypothesis (that courses are 
not becoming less hilly) in either case where all courses were taken in to account as well as 
when the Gilbert course change was neglected as an outlier in the dataset. Therefore, our 
team cannot conclude that XC courses are indeed trending towards becoming less hilly.  
 
However, the small sample size (N = 6) of this evaluation should be viewed with caution. In 
order to give a more statistically rigorous conclusion, more altered courses should be 
examined. While our team struggled to find such altered courses, the vast majority of our 
inquiries to coaches were ignored. We believe that if a request for additional evidence of 
altered courses were to be made by a more authoritative body like the Iowa High School 
Athletic Association, more courses could be identified for analysis and the hypothesis 
testing could be repeated. 
 
While the evaluation of our hypothesis was somewhat anticlimactic, the end result of our 
work (server + web tool + rating system)  holds great potential. According to our market 
research, there is currently no running app or service available that utilizes a LIDAR 
database as accurate as ours. We were also unable to find any other topography-based 
rating system for running routes; all other existing rating systems rely solely upon the 
variation trends of runners’ average times from one race to another. In contrast, our rating 
system is able to identify the root causes of these time and pace variations, not just 
variations themselves. 
 
Based on these realities, we believe that our project is the best available assessment tool for 
running routes in existence today due to its unparalleled legitimacy of our LIDAR database 
and our use of actual elevation changes to evaluate courses on metrics of energy cost, big 
hills, rolling hills, and hardest/easiest miles.  

6.2 Future Work 
The most exciting aspect of our project is the great room there is for future expansion. 
We’ve only scratched the surface of what insights can be generated from the highly 
accurate elevation data we now have the ability to interface with, and we hope that future 
senior design groups will be able to use the foundation we’ve assembled to make an even 
more robust assessment tool to better support the future of cross country running and 
defend the sport’s true spirit with challenging terrain. 
 
As previously mentioned, our software only currently works within the borders of Iowa. 
However, the website could be modified to accept elevation data sets from more traditional 
sources like Garmin units or smartphones. While we would not be able to make the same 
guarantee of legitimacy that we can make with our LIDAR analyses, the use of less accurate 
data sources is still beneficial when considering that there is no other way for courses in 
other states to be analyzed than by what we’ve constructed. Our experimentation with 
Savitzky-Golay filtering may also prove useful if this future work was pursued.  
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While we are able to identify rolling hills and big hills, additional work could be done to 
classify hills more specifically. While elevation changes were the only cause of difficulty 
that we examined in this project, it can also be argued that sharp turns of a route also 
present an element of difficulty due to the forces they exert on a runner’s body at high 
speeds. Work could be done to capture the sharpness of a route’s turns and then include 
that information in the construction of the 0-10 course rating.  
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